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ABSTRACT 

Plates of continuously cast AA5083 were subjected to friction stir processing 

(FSP) by three overlapping plunge and traverses.  The FSP used a threaded pin tool with 

a pin diameter of 3 mm, pin length of 3 mm and a shoulder diameter of 10 mm.  The 

process was run at constant tool rotation and traverse speeds of 800 rpm and 76.2 mm 

min-1, respectively.  The microstructure of the processed region was examined by optical 

microscopy and orientation imaging microscopy.  FSP of the AA5083 reduced the 

average grain size from approximately 60 m in the base metal to 3-4 m in the 

processed zone.  In addition, it created a homogeneous microstructure and, in particular, a 

refined and homogenous particle distribution without damage to the particles.  Large 

tensile samples with gage sections of 1x3x8 mm were prepared by wire EDM for high-

temperature tension testing.  Tensile tests were carried out at 450C under different strain 

rates.  The relationship between strain rate and elongation was established.  A maximum 

superplastic elongation of ~550% was obtained at a strain rate of 3 x 10-3 s-1.  The 

formation mechanism of refined grain structure and the superplastic characteristic of FSP 

material will be discussed in this paper. 
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I. INTRODUCTION 

 The concept of friction stir processing (FSP) is based on a relatively new form of 

welding developed at The Welding Institute (TWI) in Cambridge, England [1].  Friction 

stir welding (FSW) uses a rotating tool traversed along the seam of two abutted work 

pieces to join them together.  FSP has the same fundamental concept, but is not a joining 

process.  The tool is plunged and moved in a predetermined pattern to process a volume 

of material.  The tool rotation rate and traverse speed can be modified to change the heat 

input to the work piece.  FSP will promote superplasticity in a material by refining the 

grain size, homogenizing the particle distribution and increasing the fraction of high 

angle boundaries.   

 Superplastic forming is becoming increasingly important due to high demand for 

lightweight but strong materials.  AA5083 is a material of particular superplastic forming 

interest because of its corrosion resistance, weldability and high strength to weight ratio.  

 The material investigated in this study is a continuously cast AA5083 in the as-

cast condition.  The primary goal of this study is to assess the effects of FSP on the 

material.  This will be accomplished by studying the microstructure before and after FSP 

and testing the mechanical properties of the material, specifically the superplastic 

behavior. 
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II. BACKGROUND INFORMATION 

A.  ALUMINUM ALLOY 5083 

The United States Navy is always considering the most effective and cost 

effective materials and manufacturing processes.  These desires have lead to a long-term 

interest in aluminum alloys for naval shipbuilding and design.  The 5xxx-series 

aluminum alloys (Al-Mg system) are widely used in many manufacturing applications 

because of their low cost and beneficial mechanical properties.  Specifically, the 5083 

alloy is widely used because of its weldability and relatively high strength to weight ratio.  

Also, the alloy’s high corrosion resistance is ideal for exposure to salt water as demanded 

by the Navy.  Currently, the US Navy uses AA5083 in plating and extrusions on several 

of its ships, including the Littoral Combat Ship and the HSV-1 Swift [2].   

In addition to its naval application, AA5083 is also used in the civilian sector of 

industry.  The automotive industry uses the alloy for car chassis, wheels and sub-frames 

of the vehicle.  The weldability of AA5083 makes it an ideal material choice because 

these components have a high emphasis on welded material strength [3].  Recently, 

General Motors Corporation has reported on the development of quick plastic forming 

(QPF) technology for use with AA5083 [4].  QPF involved hot blow forming of AA5083 

sheet material to form various automobile body components.  This process is similar to 

superplastic forming (SPF) but takes place at higher strain rates in the range of the 

transition from grain boundary sliding to dislocation creep whereas SPF is normally done 

at the low strain rates of the grain boundary sliding regime [5-9].  QPF also takes 

advantage of the role of the Mg addition to the Al-base alloy, which results in control of 

deformation by solute drag creep (SDC) in the dislocation deformation regime.  The flow 

stress is more strain-rate sensitive during SDC and this enhances ductility under QPF 

forming conditions [10-13].  Citing its relatively high strength to weight ratio, Boeing’s 

Commercial Fleet uses AA5083 for parts of the aircraft whose failure would not lead to 

the total loss of the aircraft.  By replacing such parts as older aluminum castings and 

fiberglass assemblies, Boeing’s planes have become lighter, thus making each flight more 



cost effective [14].  Through the use of AA5083 the US Navy, along with other 

commercial industries, are making parts that are lighter, stronger, corrosion resistant, 

weldable and ultimately cheaper than other materials. 

AA5083 can be comprised of various different alloying additions, such as Cu, 

Mn, Mn+Sc, Sc+Sn, Mn+Zr, Zr and Sc [15].  For this study, a sample of AA5083 with 

the billet designator, G1, was used.  The G1 sample was received in the as-cast condition 

from Commonwealth Aluminum [16].  Table 1 gives the composition of the G1 sample, 

which represents a standard 5083 alloy composition.  

Table 1.   Chemical Composition of G1 Aluminum 

Chemical Composition of Alloys 
Element Weight % for G1 

Si 0.102 
Fe 0.191 
Cu 0.025 
Mn 0.735 
Mg 4.616 
Cr 0.249 
Zr 0.001 
Al Balance 

 

B.  SUPERPLASTICITY 

 Superplasticity is a state in which a crystalline material will deform well beyond 

its normal yield point in tension.  As a standard, superplastic behavior occurs at 

elongations over 200% of the original length [17].  Superplasticity is dependent on the 

strain rate, as shown in Equation 1 [18]. 

mK        (Eq.1) 

where σ = true stress 
 = natural strain rate 

K = constant 
m = strain-rate sensitivity index 

 
  

 4



 5

Most metals will have an m value of around 0.2; superplastic materials often have strain-

rate-sensitivity exponents larger than 0.33.  Silica glass and polymers, with m=1, are not 

considered superplastic because they are not crystalline, but rather are referred to as 

exhibiting Newtonian viscous flow [18].  

 Superplastic materials have several advantages.  With elongations over 200%, and 

sometimes as large as 1000%, all superplastic materials exhibit excellent deformability.  

The high ductility allows superplastic materials to be molded into intricate shapes.  

Continuous cast metals that are not superplastic cannot be used to form small, thin or 

intricate shapes by plastic deformation because of their low ductility.  In these materials, 

the work-piece ruptures before being formed into the desired shape [19].  The high 

ductility of superplastic materials also allows them to form large and complex work-

pieces in a single operation.  The fabrication of large, single-piece structures eliminate 

the use of joints and rivets that are needed to join other materials. The removal of joints 

and rivets increases the strength of the work-piece by eliminating sites of potential stress 

concentrations [20].  Also, by forming only one large work-piece, superplastic materials 

eliminate the need for extra machining.  This also saves money by saving time and does 

not produce waste or scrap material [20].   

 Another advantage of super-plastic materials is that they do not have to be heat 

treated to achieve high ductility.  Cast, or continuously cast materials must be heat 

treated, quenched, and then aged at temperature before being formed into a work-piece.  

This process is time-consuming and the apparatuses required for this process are 

expensive.  The heat treatment process creates distortions in the CC materials.  These 

distortions must be fixed before final processing can occur, once again slowing down the 

procedure.  Superplastic materials, because they do not need to be heat treated, do not 

have these residual stresses.  The high ductility and ease of processing make superplastic 

materials an ideal material for many applications. 

 The microstructure of a material is related to its superplastic behavior.  The 

driving force behind this behavior is a small average grain size.  Typical grain sizes are 

around 20-25 m in conventional aluminum alloys, but it is understood that a smaller 

grain size is necessary for superplasticity.  The small grain size enables the deformation 
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of the material by grain boundary sliding, allowing the material to stretch 

superplastically.  Another characteristic of superplastic materials is a large amount of 

high angle grain boundaries.  High angle grain boundaries make it easier for grain 

boundary sliding to occur, leading to superplasticity.  Finally, a homogeneous dispersion 

of fine-grained particles within the material promotes plastic deformation.  

Understanding the microstructure of the material leads to an understanding of how to 

process a material to obtain these characteristics and thus a superplastic material. 

 There are only a few methods to create superplasticity within a metal.  Currently, 

sheets of continuously rolled AA5083 achieve superplasticity by undergoing cold rolling.  

The sheet of AA5083 is produced through direct chill casting, and then put through 

several steps of rolling treatment.  Cold rolling is an effective method because it increases 

the yield strength and hardness of the metal by introducing dislocations into the crystal 

structure and may reduce the average grain size as well.  However, cold rolling is a very 

costly operation and is only economically viable for large industrial production [15].  In 

order to overcome these expenses, new methods of creating superplasticity have been 

developed.  Friction stir processing is an emerging technique that can be used to reduce 

the grain size and thus promote superplastic behavior. 

C.  FRICTION STIR PROCESSING 

 The technique of friction stir processing (FSP) is based on a form of welding 

developed at The Welding Institute (TWI) in Cambridge, England [1].  Friction stir 

welding (FSW), as developed by TWI, is a solid state joining process that uses a rotating 

tool to traverse along the seam of two abutted work pieces.  FSP is similar in concept, but 

is not used as a joining process.  In FSP, a tool is rotated and plunged into the surface of 

the work piece.  The tool contains a shoulder and a smaller, projecting pin.  After the pin 

has been plunged to the desired depth, the entire tool is traversed along the surface of the 

work piece in a pre-determined pattern.  Figure 1 is a schematic of a single plunge and 

traverse.  
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Figure 1.   Friction Stir Processing: (a) Rotating Tool (b) Initial Plunge into Surface of 
Work Piece (c) Plunge to Desired Depth (d) Traverse of Tool. From [21] 

 The rotation of the tool and the contact with the surface of the work piece creates 

a large amount of friction.  Heat is generated within the work piece, both due to the 

surface friction and the adiabatic heating from the plastic deformation occurring in the 

work piece.  Due to the heat input, the softened material flows around the pin tool from 

the advancing side to the retreating side.  As the tool continues along its traverse path, the 

material cools and re-solidifies with a refined grain structure.   

 It is theoretically stated that a lower heat input during FSP will result in the 

smaller grain size. Two parameters can be varied in FSP to control the amount of heat 

input.  By slowing the rotation rate of the pin tool, the heat input will be minimized [15].  

This assertion is corroborated by the fact that the slower the pin tool rotation, the lower 

the maximum temperature reached in the processed zone.  Another way to reduce the 

grain size is to increase the traverse rate.  Although other factors, such as strain, cooling 
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rate and tool design play a role in the grain size produced, the general trend of decreasing 

the tool rotation speed and increasing the traverse rate can be applied to minimizing the 

grain size.  Achieving minimum grain size should maximize superplastic behavior [22]. 
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III. EXPERIMENTAL PROCEDURE 

A.  OVERVIEW 

This research focuses on the microstructure analysis and mechanical properties of 

friction stir processed AA5083. In order to analyze the changes in microstructure, optical 

microscopy, as well as scanning electron microscopy (SEM) equipped with orientation 

imaging microscopy (OIM) was performed.  An annealing process was used to measure 

the effects of extended time at elevated temperature on the grain size in the processed 

area.  Finally, the mechanical properties of the processed AA5083 were assessed using 

elevated temperature tensile tests.  Combining these procedures will provide a method for 

determining the effectiveness of FSP on creating a superplastic material. 

B.  FRICTION STIR PROCESSING PROCEDURE 

 AA5083 samples were received from the manufacturer in the as-cast condition.  

In order to maximize the amount of material to be processed, the slab of AA5083 was 

sectioned into 5 mm thick rectangular slabs using wire electrical discharge machine 

(EDM).  Next, the slabs were milled on both sides in order to present a smooth, defect-

free surface for friction stir processing.  A picture of the AA5083 plate used in FSP is 

given in Figure 2.   
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Figure 2.  

Figure 3.  

 

 Continuously Cast AA5083 Plate used in FSP 

 The AA5083 plate was processed using a modified milling machine.  The FSP 

tool was fabricated in H-13 steel and used a threaded pin in order to promote maximum 

stirring during processing.  The pin diameter was 3 mm, the pin length was 3 mm and the 

shoulder diameter of the tool was 10 mm.  A simplified schematic of the tool, showing an 

unthreaded pin is given in part (a) of Figure 3.  Part (b) of Figure 3 gives a schematic of 

the threaded pin tool design.  Figure 4 is a picture of the actual pin tool used in FSP. 

 

 Simplified Tool Design (a) Schematic of Shoulder and Pin (b) Threaded Pin 
Only. From [22] 
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Figure 4.  

Figure 5.  

 Threaded Pin Tool Used in FSP 

The plates of continuously cast AA5083 were subjected to FSP by three 

overlapping plunge and traverses.  The process was run at constant tool rotation and 

traverse speeds of 800 rpm and 76.2 mm min-1, respectfully.  A picture of the milling 

machine used to conduct the processing is shown in Figure 5. 

 Friction Stir Processing Apparatus 

 



 Three overlapping passes were used to create a processed area thick enough to 

contain the entire tensile sample.  One pass was made, and then the pin tool was removed 

from the surface.  The pin was brought back in line with the original entry point before 

the next pass was made.  A step-over distance of 2 mm from the previous pass’ centerline 

was used. The entire pin was plunged into the work piece to a depth where the shoulder 

enters the work piece.  Figure 6 below shows three sets of three plunge and traverses in 

the aluminum plate.   

 

 12

Figure 6.   Continuously Cast AA5083 Plate After FSP 
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C.  MICROSTRUCTURE ANALYSIS OF AS-PROCESSED AA5083 

1.  Optical Microscopy 

a.  Sample Preparation 

Wire EDM was used to cut a 17 mm x 5 mm x 1.5 mm sample for 

inspection in the optical microscope.  The cut of the sample section was made 

perpendicular to the transverse axis in order to encompass the processed region and the 

surrounding base metal.  A thermosetting resin was molded around the aluminum sample, 

exposing only the sample surface.  The sample was polished with the Buehler Ecomet 14 

Variable Speed Grinder-Polisher in order to eliminate surface defects.  Table 2 lists the 

order of abrasives used to achieve a mirrored finish, free of scratches, on the surface of 

the specimen.   

Table 2.   Grinding and Polishing Procedure 

Grinding and Polishing Procedure 
Step Abrasive Used 

1 320 Grit SiC Paper 
2 600 Grit SiC Paper 
3 1200 Grit SiC Paper 
4 2400 Grit SiC Paper 
5 3 µm Metadi Diamond Suspension 
6 1 µm Metadi Diamond Suspension 
7 0.5 µm Metadi Diamond Suspension 

 

After polishing, the samples were etched to highlight the large amounts of 

energy stored along the grain boundaries.  The etching solution is comprised of 10% 

phosphoric acid (H3PO4) and 90% water.  The solution was heated to 50ºC, and then the 

sample was immersed in the heated liquid for three minutes.  Once etched, the sample 

was removed and rinsed with ethanol to remove the excess solution from the surface.  

Finally, the sample was dried using a heat gun to prevent the formation of water spots.   
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b.  Optical Microscopy Procedure 

  A Nikon Ephiphot 200 optical microscope was used to observe the 

microstructure of the etched samples.  Pictures were taken at low magnification before 

transitioning to higher magnification to allow for more detail.  Sections of the entire 

surface were captured at low magnification and arranged to create a montage of the entire 

stir zone.  The microstructures of different regions of the sample were studied by optical 

microscopy.  While the depth was tried to be kept constant, two sites were changed to see 

the variation in microstructure from the top to the bottom of the stir zone.  These 

micrographs extend from the base metal through a heat-affected zone (HAZ), a thermo-

mechanically affected zone (TMAZ) and into the stir zone.   

2.  Scanning Electron Microscope (SEM) 

a.  Sample Preparation 

  Two mm thick SEM samples were cut from the middle of the FS 

processed zone.  The cut of the sample section was made perpendicular to the transverse 

axis in order to encompass the entire stir zone.  Each of the samples was polished as if 

being prepared for optical microscopy.  However, in addition to the grinding wheels, each 

sample was polished using the Electromet4 Electropolisher power supply and cell 

module.  The polishing solution was 80% ethanol, 6% perchloric acid and 14% water.  

Each sample was electro-polished for 20 seconds using a voltage of 15 volts.  Once the 

sample had been electro-polished, it was placed in the SEM for inspection using 

orientation imaging microscopy.   

b.  Orientation Imaging Microscopy Procedure 

  Orientation imaging microscopy was performed by the TOPCON SM510 

scanning electron microscope.  Two sets of scans were performed on the as processed 

AA5083 sample with a scan step of 0.5 m.  The first set was comprised of two different 

areas: the base metal and the stir zone.  The second set contained scans from the top, 

middle and bottom, but all within the stir zone.  Once each of the scans had been 

performed, the data was analyzed using the orientation imaging microscopy (OIM) 
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software.  In order to create a clean image, software cleanup tools were used.  The first 

setting was grain dilation with a grain tolerance angle of five and a minimum grain size 

of two points.  Next was the grain confidence index standardization, which used the same 

settings as the grain dilation and tolerance angle.  Finally, the neighbor confidence index 

was set to 0.05.  The OIM software provided both numerical and graphical data outputs.     

D. ANNEALING OF FSP AA5083 

 In order to simulate the time spent at elevated temperature during tensile testing, 

samples of FS processed aluminum were placed in an oven set to 450ºC.  A K-type 

thermocouple was used to ensure that the temperature at the sample location was 450ºC.  

Five samples were cut from the FS processed zone and had the same dimensions as those 

used for optical microscopy.  Each sample was left in the furnace for a different amount 

of time.  Table 3 gives the times each sample spent at the elevated temperature.  Once the 

samples had been removed from the furnace, they were air cooled to room temperature. 

Table 3.   Annealing Times 

Sample Time (min) 
1 30 
2 45 
3 60 
4 120 
5 240 

 

E.  MICROSTRUCTURE ANALYSIS OF ANNEALED SAMPLES 

1.  Optical Microscopy   

 The optical microscopy procedure was the same as the as-processed condition.  

However, instead of creating a montage, single micrographs were obtained for each 

temperature.  Micrographs were taken in the base metal, at the stir zone boundary and in 

the middle of the stir zone.   



2.  Scanning Electron Microscopy (SEM) 

 The microstructure of the sample annealed for 240 minutes was studied using 

OIM and SEM.  OIM data was collected from at TSL OIM system equipped in the 

TOPCON SM510 SEM.  A scan of the sample annealed for 240 minutes was completed 

and cleaned up using the same parameters as before.  The backscatter images of the base 

metal and stir zone were obtained from the Zeiss Neon SEM.  Figure 7 shows a picture of 

the Zeiss Neon SEM. 
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Figure 7.   Zeiss Neon Scanning Electron Microscope 

F. MECHANICAL TESTING 

1.  Tensile Sample Design 

 Large tensile samples were created to test the superplasticity of the FS processed 

AA5083.  With a limited amount of material, tensile samples needed to be designed 

carefully in order to maximize the number of samples, but also maintain size integrity.  

The design dimensions used for the tensile sample are given in Figure 8 below. 
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Figure 8.   Tensile Sample Dimensions. From [16]  

2.  Tensile Sample Fabrication 

 The tensile samples were cut using wire EDM and a program, which defines the 

dimensions of the tensile sample.  The initial starting point and origin for the program 

was selected to ensure that the gage section of the tensile sample was in the middle of the 

three traverses. 

 Once the tensile samples had been cut, each needed to be prepared for use in the 

Instron tensile testing machine.  In order for the grips to be clamped to sample, holes 

must be drilled into the tensile sample.  A #13 drill bit was used to create the hole.  Next, 

the samples were polished using the same abrasives and procedure as if being prepared 

for optical microscopy.  Finally, the side of the gage section was polished by hand using 

600 and 1200 grit SiC paper.   



3.  Superplastic Testing 

 In order to test the superplastic behavior of the FS processed AA5083, tensile 

samples were pulled to failure at elevated temperature.  The furnace attached to the 

Instron testing machine was heated to 450ºC and allowed to remain at temperature for 

one hour.  Figure 9 shows the entire Instron apparatus with the furnace doors closed.  
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Figure 9.   Instron Tensile Testing Machine with Furnace 

Outside of the furnace, a tensile sample was clamped in the grips, with special 

attention paid to ensuring that the gage section of the specimen was not bent.  Once the 

temperature in the furnace reached 450ºC, the sample was placed in the grips and allowed 

to equilibrate at temperature for 45 minutes.  The sample was placed in the second of five 

regions of the furnace.  This ensured that as the sample was elongated downward, the 

gage section would remain in the middle of the furnace.  Figure 10 shows the grips of the 

Instron machine where the sample was inserted.  Once the sample had reached 450ºC, the 

Instron program was run and the sample was pulled to failure at a constant rate. 
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Figure 10.   Instron Machine Sample Grips 

 Table 4 gives the strain rates tested.  The corresponding rate in mm/min was 

based on a nominal gage length of 8 mm.  This rate was used in the Instron program to 

control the rate at which the grips moved apart. 

Table 4.   Strain Rates  

Strain Rates 
Test Strain Rate (s-1) Strain Rate (mm/min) 

1 3 x 10-4 0.144 
2 1 x 10-3 0.48 
3 3 x 10-3 1.44 
4 1 x 10-2 4.8 
5 1 x 10-2 4.8 
6 3 x 10-2 14.4 
7 1 x 10-1 48.0 
8 1 x 10-1 48.0 
9 3 x 10-1 144.0 
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IV. RESULTS 

A.  OVERVIEW 

The results obtained from each of the studies will be presented in this section.  

The microstructure analysis will be based on the optical micrographs, orientation imaging 

microscopy results and the backscattered electron images.  Finally, the results from the 

elevated temperature tensile tests will be discussed.   

B.  MICROSTRUCTURE ANALYSIS OF AS-PROCESSED AA5083 

1.  Optical Microscopy 

 Figure 11 shows a montage at low magnification of a cross-section of the as-

processed sample in a plane perpendicular to the tool traverse direction.     
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Figure 11.   Low magnification montage of as-processed AA5083 showing a stir zone 
created by FSP at tool rotation speed of 800 rpm and traverse rate of 76.2 mm min-1.  The 

stir zone is identified by the grain refinement and flow pattern.  The numbers show the 
sites of optical micrographs. 

The stir zone is distinct from the base metal and shows a refined grain structure. 

In addition, a flow pattern is visible within the stir zone.  These “onion rings” are the 

result of the tool traversing and rotating at the same time.  The stir zone is intact and does 

not contain a tunneling defect found in previous work.  Figure 12 compares two stir 

zones: a defect free stir zone created in this study and a stir zone with a tunnel defect. 
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Figure 12.   (a) Intact stir zone apparently free of macroscopic defects created by FSP at 
800 rpm, 76.2 mm min-1 and a threaded pin. (b) Tunnel defect in lower corner of stir 

zone, created by FSP at 350 rpm, 101.6 mm min-1 and a smooth pin. Material processed 
for Bland thesis work completed in 2006. From [16]. 

 The tunnel defect was formed in a plate processed by a smooth pin at a tool 

rotation rate of 350 rpm and traversing rate of 101.6 mm min-1.  A combination of the 

threaded pin design and processing parameters has contributed to the elimination of this 

defect.   

 Higher magnification pictures were taken at various points across the surface of 

the FS processed sample.  Figure 13 provides the optical micrographs from the seven 

numbered locations given in Figure 11.  Sites 4 and 5 are not in line with the other sites in 

order to show the variation in grain structure with depth.  
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Figure 13.   Optical micrographs taken from the as-processed AA5083 sample.  Pictures 
start in the base metal, extend through the heat affected zone (HAZ), the thermo-

mechanically affected zone (TMAZ) and into the stir zone.  Site 7 is in the HAZ on the 
far side of the stir zone.  The stir zone is identified by a refined grain structure and a 

homogeneous particle distribution. 
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Sites 1 and 2 are in the base metal.  Sites 3, 4, 5, and 6 are within the stir zone, 

with site 5 being towards the bottom of the stir zone.  Site 7 is in the HAZ on the far side 

of the stir zone.  The base metal can be identified by a larger grain structure and non-

uniform dispersion of constituent particles.  The higher magnification micrographs taken 

within the stir zone reveal a refined grain structure.  In addition, the particle distribution 

has become more homogeneous throughout.  Site 5 is towards the bottom of the stir zone 

and close to the interface, and can be identified as such because the plastic deformation 

flow pattern produces a striping pattern.  Site 7 can be identified as in the HAZ, and has a 

similar grain structure as the base metal.  Overall, the low magnification optical 

micrographs show a distinct stir zone created by FSP.  The high magnification 

micrographs reveal a refined grain structure as well as a homogeneous dispersion of 

particles within the stir zone. 

2.  Scanning Electron Microscope (SEM) 

 The grain sizes in the stir zone created by FSP were too small to be clearly 

resolved by optical microscopy.  In order to measure the grain size, orientation imaging 

microscopy (OIM) was carried out in the SEM.  The first set of OIM scans compared the 

base metal and the stir zone.  The scan measured an 800 µm x 1000 µm area of the 

sample surface.  The surface scanned is transverse to the direction of tool advance and is 

shown in Figure 14.  Figure 15 and 16 show the grain distribution, grain misorientation 

angle and (001) pole figures for the base metal and stir zone, respectively.  Figure 17 

provides a comparison of the average grain size between these two regions.  The SEM 

software may be used to determine the average area of each grain.  This value is 

converted to a circle of equivalent area and the equivalent diameter is then calculated.   
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Figure 14.  

Figure 15.  

 Schematic of the friction stir process.  The pin is plunged into the surface, 
creating a stir zone within the volume of material.  The advancing side is shown on the 

right of the pin tool and the retreating side is shown on the left.  The face used for optical 
microscopy as well as the OIM scans is outlined in blue. 

 

 OIM Results for Base Metal: Results show a large average grain size of 70 
µm.  There are 65% high angle grain boundaries.  The large fraction of low angle 

boundaries is presumably the result of the rolling operation during continuous casting.  
The (001) pole figure reveals a random texture. 
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Figure 16.   OIM Results for Processed Zone: Results reveal a refined, equiaxed grain 
structure with an average grain size of 4 µm.  The fraction of high angle grain boundaries 

has been increased to 80%.   The reduction of low angle boundaries suggests that FSP 
allows the sample to approach compete recovery and recrystallization.  The (001) pole 

figure reveals a weak deformation texture. 
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Figure 17.   Comparison of grain size between (a) base metal and (b) processed zone of 
FSP AA5083.  The average grain size in the base metal is 70 µm while the average grain 

size in the processed zone has been reduced to 4 µm.  
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As shown in Figure 15, the base metal has a large grain size, high fraction of low 

angle boundaries and a random texture.  Figure 16 shows that substantial changes have 

been made to the microstructure in the stir zone.  In the base metal, 65% of the boundary 

angles are high angle boundaries (>15º).  This value has been increased to 80% within the 

processed zone.  FSP has also added a weak deformation texture to the processed zone 

while the texture of the base metal appears to be random.  The grain structure of Figure 

16 and the graphs of Figure 17 reveal that the grains in the processed zone are 

significantly smaller than in the base metal. The average grain size in the base metal is 

~70 µm.  This has been reduced to ~4 µm inside of the stir zone.   

Three more OIM scans were performed inside the stir zone to examine the 

variation in grain size with depth.  Figure 18 shows the location depths of the scans made 

as well as the OIM results depicting grain structure, texture and grain size. 
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Figure 18.   Low magnification micrograph of stir zone depicting three locations within 
the stir zone where OIM scans were performed.  OIM scans reveal a uniform 

microstructure and the presence of a weak deformation texture.  The grain size is fairly 
uniform: 5 µm in the top, 4 µm in the middle and 3 µm in the bottom. 
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 The grain structure is similar for each region, and shows a refined size and 

equiaxed structure.  All three areas contain a similar texture.  The grain size has been 

refined, with the most refinement coming at the bottom of the stir zone.  From top to 

bottom, the grain size slightly decreases, from 5 µm at the top to 4 µm in the middle to 3 

µm in the bottom.  These scans show that a basically uniform microstructure has been 

achieved throughout the stir zone.  From the OIM scans, it can be concluded that FSP 

created a uniformly refined, equiaxed grain structure, increased the fraction of high angle 

grain boundaries.  Refinement of particle size and a more homogeneous distribution of 

the precipitate phase also accompanied the grain refinement during FSP.  

C.  MICROSTRUCTURE ANALYSIS OF ANNEALED AA5083 

1.  Optical Microscopy 

 The annealed samples were examined under the optical microscope.  Figure 19 

provides micrographs in the base metal and processed zone for each annealing time. 
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Figure 19.   Optical micrographs in the base metal and processed zone of FS processed 
AA5083 samples annealed at 450ºC.  The micrographs reveal stable grain growth in both 
regions.  There was no evidence of any abnormal grain growth in these samples.  Some 
studies have reported abnormal grain growth in AA5083 during FSP or after subsequent 

heat-treatment at high temperature [5].  
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 Due to a very small grain size, the grain boundaries, and thus the average grain 

size, cannot be identified on the micrograph.  However, it is possible to discern that no 

abnormal grain growth has occurred, which would cause the grains to grow exponentially 

with time.  In order to determine the grain size, OIM was performed.  The precipitate 

distribution in these samples was quite uniform even after annealing and unlike the base 

material, large precipitates were not observed along the grain boundaries. 

2.  Scanning Electron Microscope 

a.  OIM 

  OIM was used to analyze the microstructure of the sample annealed for 

240 minutes.  Figure 20 shows the grain distribution, grain boundary misorientation angle 

and the (001) pole figure for the annealed sample.  
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Figure 20.   OIM results for a FS processed AA5083 sample annealed at 450ºC for 240 
minutes.  These images showed a refined grain structure in general, but often banded 
regions with slightly larger grains were observed.  The fraction of high angle grain 

boundaries is 90%.  The (001) pole plot reveals a slight deformation texture consistent 
with the as-processed sample. 

 Following the prolonged annealing at elevated temperature, 90% of the grain 

boundaries were high angle boundaries.  Also, the deformation texture pattern was 

retained.  From the grain distribution plot, it can be seen that the microstructure is still 

refined.  The grains in the annealed sample remain equiaxed but there were regions (or 

bands) where the grains were somewhat larger.  Figure 21 provides a comparison of the 

as-processed AA5083 and a sample that had been annealed for 240 minutes.   
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Figure 21.   Microstructure comparison of FS processed AA5083 in the (a) As-processed 
condition and (b) after annealing at 450ºC for 240 minutes.  OIM results show that the 

grain structure is still refined and equiaxed, and the average grain size has grown from 4 
µm to 5 µm.  It appears that the deformation texture is retained in the samples even after 

a prolonged aging at 450ºC. 
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These results show that annealing the friction stir processed AA5083 results in 

very restricted grain growth even after 240 minutes exposure at 450ºC.  The deformation 

texture produced during the tool rotation appears to be retained even after long term 

annealing at high temperature.  The average grain size in the as-processed material was 4 

µm.  After 240 minutes, the average grain size had grown to 5 µm.   

b.  Back-Scattered Electron (BSE) Imaging 

  BSE images, as well as in-lens secondary electron (SE) images were 

obtained using the Zeiss Neon SEM and are presented in Figure 22.  These images show 

the grain structure of the FS processed AA5083 in both the as-processed and annealed 

condition.  Figure 22a shows a low magnification BSE image representing both the 

processed zone and the base metal.  The processed zone is at the top of the frame and is 

characterized by the fine microstructure.  The base metal is in the bottom of the frame 

and an interface region between the two is identified by an elongation of the grains.  

Figure 22b and Figure 22c are in-lens SE images showing high magnification pictures of 

the grain structure within the processed region.  The grains are equiaxed and the average 

grain size appears to be 1 µm.  Figure 22d is a BSE image of the sample that had been 

annealed for 240 minutes at 450ºC.  The micrograph shows coarsened grains with a grain 

size of approximately 5 µm.  The presence of precipitates (appearing white) is also 

visible on the image.  The precipitates are homogeneously distributed throughout the area 

and are presumably the Al6Mn phase.   
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Figure 22.   BSE and SE images obtained for FS processed AA5083 (a) As-processed 
condition showing refined grain structure in processed zone and elongation of grains in 

the base metal. (b) Processed region showing equiaxed grain structure (c) Processed zone 
at high magnification showing an average grain size of 1 µm.  (d) Annealed sample at 

450ºC for 240 minutes showing equiaxed grains in the processed region with an average 
grain size of 5 µm.  Homogeneous distribution of particles is also visible. 

D.  MECHANICAL TESTING  

 Nine samples were pulled to failure at elevated temperature using different strain 

rates.  Table 5 gives the elongations for each strain rate.  The elongation percentages 

were based on an original gage length of 8 mm.  Figure 23 shows a photograph of all the 

tested samples, arranged from lowest strain rate at the top to the largest strain rate at the 

bottom. 
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Table 5.   Results from tensile tests of FS processed AA5083 samples at 450ºC.  A 
maximum elongation of 633% occurred at a strain rate of 1 x 10-2 s-1.  The 

elongation percentages were based on a starting gage length of 8 mm. 

 
Superplastic Testing 

1 3 x 10-4 243% 

2 1 x 10-3 380% 

3 3 x 10-3 550% 

4 1 x 10-2 430% 

5 1 x 10-2 633% 

6 3 x 10-2 500% 

7 1 x 10-1 160% 

8 1 x 10-1 143% 

9 3 x 10-1 100% 
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Figure 23.  
 

 Tensile samples of FS processed AA5083 after being pulled to failure at 
450ºC.  The samples tested at the lowest strain rate are at the top and the largest strain 
rates are at the bottom of the picture.  A maximum elongation of 633% was achieved. 



 A maximum elongation of 663% was achieved at a strain rate of 1 x 10-2 s-1. Most 

of the samples experience superplastic behavior, except for the three samples tested at 

higher strain rates (≥1 x 10-1).  These samples did not elongate past 200% of their original 

length.  A plot of the data showing the variation in elongation with strain rate is given in 

Figure 24. 
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Figure 24.   Graph showing the variation of elongation with strain rate.  The graph shows 
an increase in elongation with an increase in strain rate to 1 x 10-2 s-1.  Then, the 

elongation decreases past strain rates of 1 x 10-2 s-1.  A maximum elongation occurred at 
1 x 10-2 s-1.  



 Stress-strain curves were not obtained in this study due to the use of a large load 

cell to pull the samples to failure.  The amount of force needed to pull the sample to 

failure was an order of magnitude smaller than the maximum force put out by the load 

cell.  This disparity did not allow for the sensitivity needed to create a meaningful stress-

strain curve.  This also prevented the obtainment of true strain values.   

E.  COMPARISONS WITH OTHER WORK 

 Similar work had been completed on the superplastic behavior of FS processed 

AA5083.  Figure 25 provides a comparison of previous work with the results obtained in 

this study.   
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Figure 25.   Elongation behavior achieved under various processing conditions.  (a) FSP at 
800 rpm and 76.2 mm min-1 (b) DC AA5083 (c) FSP at 350 rpm and 101.6 mm min-1 (d) 
CC-AA5083 lab cold rolled (e) CC-AA5083 GM data.  Maximum elongation of 1245% 

occurred in data set (c) at a strain rate of 1 x 10-1 s-1.  Trends between the two FS 
processed materials are similar, with the graph from this study being shifted down and to 

the left. 
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 The trends between the two studies are similar, as both experience maximum 

elongations.  However, the data obtained in this study is shifted down and to the left, 

meaning the maximum elongation is less and occurs at a smaller strain rate.  The 

maximum elongation for the previous data was 1245% and occurred at a strain rate of 1 x 

10-1 s-1.  The previous FS processed AA5083 was obtained by processing at 350 rpm, 

101.6 mm min-1 and using a smooth pin.  FSP created an average grain size of 2 µm.  

This refined grain size contributed to the exceptional elongation exhibited.  The material 

processed in this study exhibited lower elongation at lower strain rates because the grain 

size achieved was larger than the previous study.  However, both of the FS processed 

materials exhibited greater peak elongation than the other methods.  This improvement in 

superplastic behavior can be attributed to the grain refinement in the stir zone, as well as 

the increase of high angle grain boundaries and the homogeneity of precipitate particles. 
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V. DISCUSSION 

A. MICROSTRUCTURE ANALYSIS 

 The microstructure analysis in this study has shown that FSP is an effective 

method of refining the grain size of AA5083.  The grains have been refined from a size of 

70 µm in the as-received, as-cast base metal to 4 µm within the stir zone.  Scans of 

different regions within the stir showed that the grain size was quite uniform throughout 

the stir zone.   

 Several mechanisms of grain refinement during FSP have been reported.  These 

mechanisms include dynamic recrystallization (DRX), geometric dynamic 

recrystallization (GDRX) and particle stimulated nucleation (PSN) [23].  This study has 

shown that a very fine grain structure may be produced in AA5083 by FSP.  The details 

of the recrystallization mechanism in these microstructures are unclear.  However, 

dynamic recrystallization likely has an important role during FSP [24] and precipitate 

particles certainly contribute to the formation and retention of a refined grain structure.  

Further research work is needed to identify the grain refinement mechanism. 

 Orientation imaging microscopy showed that the fine grain structures in the FS 

processed AA5083 consisted of mainly high angle grain boundaries.  The large fraction 

of high angle grain boundaries make it easier for grain boundary sliding to occur, leading 

to superplasticity. 

 A weak deformation texture was found in the FSP samples.  The base metal had a 

random texture.  The weak deformation texture is persistent through the entire stir zone.  

It is also retained after the extended time at temperature.   

 An important issue when dealing with processing parameters is the heat input to 

the work piece.  By varying the two processing parameters of tool rotation rate and 

traversing rate, the peak temperature reached in the work piece can be altered. Decreasing 

the tool rotation rate or increasing the traverse rate will decrease the heat input.  This will 

lead to a smaller grain size.  A smaller grain size should result in better superplastic 

behavior.  This assertion is backed up the comparisons of the AA5083 processed in this 
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work and the AA5083 processed in the earlier study by Bland [16] wherein the plate was 

processed at slower tool rotation rates and a faster traverse rate.  The resulting average 

grain size was smaller than the grain size in this work.  The smaller grain size was a 

factor in longer elongations observed.   

 The stir zone for the AA5083 processed in this study was intact and free of any 

macroscopic defects.  While the appearance of a tunnel defect does not appear to have 

any impact on the superplastic behavior, it should be noted that an intact stir zone is more 

desirable.   

 Post-processing annealing at 450ºC had very little effect on the average grain size 

within the processed zone.  These results show that the grain growth is stable throughout 

the tensile testing process.  Stable grain growth eliminates abnormal grain growth during 

the tensile testing.  Abnormal grain growth often occurs in FSP materials and is 

characterized by an exponential growth in grain size due to a prolonged exposure to high 

temperature.   

 The homogeneous precipitate particle distribution is also a large factor in the 

superplastic behavior of the FSP AA5083.  The particles within the stir zone are much 

finer than the particles found in the as-cast material.  The more uniform particle 

distribution contributes to the improved mechanical properties of the material.  

B. MECHANICAL PROPERTIES ANALYSIS 

 The superplastic testing conducted in this research shows that FSP was an 

effective method for creating elongations over 200%.  The increased ductility in the FSP 

AA5083 materials is most likely due to several factors, with the most prominent being 

the grain refinement.  The small grains make it difficult for dislocations to move, thus 

increasing the yield strength of the material.  The small grain size enables the 

deformation of the material by grain boundary sliding, allowing the material to stretch 

superplastically.  The homogeneity of the precipitate particles delays void nucleation and 

cavitation growth within the material, thereby delaying the failure mechanism.  Also, the 

large fraction of high angle grain boundaries allows for the grain boundaries to slide, thus 

enhancing the plastic behavior of the material.   
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VI.  CONCLUSIONS 

1. This study successfully processed AA5083 using the FSP technique.  A milling 

machine with a threaded pin was used to FS process the material.  The parameters used 

were a tool rotation rate of 800 rpm, a traverse rate of 76.2 mm min-1 and a step-over 

distance of 2 mm.  A high quality processed material, free of processing defects, was 

obtained. 

 2. Friction stir processing is an effective method for grain refinement in as-cast 

AA5083.  It can be seen that the stir zone is distinct from the base metal.  A grain 

reduction from 70 µm in the base metal to 4 µm in the stir zone was measured.  The 

grains are equiaxed and appeared uniform throughout the stir zone.  A range in grain size 

from 1 to 5 µm was observed in the processed material. 

 3.  The OIM analysis showed that the fine grain structure had mainly high angle 

boundaries.  The percentage of high angle boundaries was increased from 65% in the 

base metal to 80% in the processed region.  The increase of high angle boundaries 

promotes superplastic behavior. 

 4.  Compared with a random texture found in the base metal, the (001) pole 

figures suggest a weak deformation texture in the FS processed material.  This texture is 

retained even after annealing for 240 minutes at 450ºC.   

 5. The base material shows large concentrations of precipitate particles.  After 

FSP, the precipitates were refined and redistributed in a basically homogeneous manner 

throughout the stir zone.  The homogeneous particle distribution also contributes to 

superplastic behavior.   

 6.  The annealing procedure shows that stable grain growth takes place in the FS 

processed AA5083.  This shows that no abnormal grain growth occurs in the sample 

during mechanical testing.  Stable grain growth takes place for all of the strain rates 

tested. 
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7.  The FS processed AA5083 exhibited excellent superplastic behavior at an elevated 

temperature of 450ºC.  A maximum elongation of 633% was obtained at a strain rate of 1 

x 10-2 s-1.  Superplasticity was obtained at strain rates ranging from 3 x 10-4 to 3 x 10-2 s-1.  
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VII. RECOMMENDATIONS FOR FUTURE WORK 

A. FRICTION STIR PROCESSING PARAMETERS 

 The processing parameters for AA5083 can be changed in order to achieve 

optimum processing conditions.  By changing the tool rotation rate and/or the traverse 

rate, the amount of heat input to the work piece can be modified.  The change in heat 

input to the work piece can be modified.  The change in heat input will change the size of 

the grains in the stir zone.  While a small microstructure is desired, the parameters must 

be modified to ensure that no macroscopic defects are present in the material.  This may 

be accomplished by changing the parameters or examining the effects of the threaded pin 

under similar conditions.  Finally, an optimized overall processing speed must be 

investigated if FSP is to become an economical method of producing a superplastic 

material.  In order to minimize the processing time, yet ensuring that the entire volume of 

material is processed, the step-over distance needs to be optimized.   

B. MECHANICAL TESTING CONDITIONS 

The range of conditions under which the FSP AA5083 was mechanically tested 

needs to be expanded to more thoroughly evaluate the temperature and strain-rate 

dependence of the superplastic behavior.  This would include varying the testing 

temperature for as-processed material as well as after various post-processing treatments 

to control microstructure. 
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